
1 © 2011 The MathWorks, Inc.

Parallel Computing with MATLAB

Tim Mathieu

Sr. Account Manager

Gerardo Hernandez

Application Engineer

Abhishek Gupta

Application Engineer

2

Some Questions to Consider

 Do you want to speed up your algorithms?

 Do you have datasets too big to fit on your computer?

If so…

 Do you have a multi-core or multiprocessor desktop

machine?

 Do you have access to a computer cluster?

3

Solving Big Technical Problems

Large data set

Challenges

Long running

 Computationally

intensive

Wait

Larger Memory Pool

(e.g. More Machines)

Solutions

Larger Compute Pool

(e.g. More Processors)

Reduce size

of problem

You could…

4

Utilizing Additional Processing Power

 Built-in multithreading

– Core MATLAB

– Introduced in R2007a

– Utility for specific matrix operations

– Automatically enabled since R2008a

 Parallel computing tools

– Parallel Computing Toolbox

– MATLAB Distributed Computing Server

– Broad utility controlled by the MATLAB user

5

Worker Worker

Worker

Worker

Worker
Worker

Worker

Worker TOOLBOXES

BLOCKSETS

Parallel Computing with MATLAB

6

User’s Desktop

Parallel Computing
Toolbox

Compute Cluster

MATLAB Distributed
Computing Server

MATLAB Workers

Parallel Computing with MATLAB

7

Programming Parallel Applications

Level of control

Minimal

Some

Extensive

Required effort

None

Straightforward

Involved

8

Programming Parallel Applications

Level of control

Minimal

Some

Extensive

Parallel Options

Low-Level

Programming Constructs:
(e.g. Jobs/Tasks, MPI-based)

High-Level

Programming Constructs:
(e.g. parfor, batch, distributed)

Support built into

Toolboxes

9

Example: Optimizing Tower Placement

 Determine location of cell towers

 Maximize coverage

 Minimize overlap

10

Summary of Example

 Enabled built-in support for

Parallel Computing Toolbox

in Optimization Toolbox

 Used a pool of MATLAB workers

 Optimized in parallel using fmincon

11

Parallel Support in Optimization Toolbox

 Functions:

– fmincon

 Finds a constrained minimum of a function of several variables

– fminimax

 Finds a minimax solution of a function of several variables

– fgoalattain

 Solves the multiobjective goal attainment optimization problem

 Functions can take finite differences in parallel

in order to speed the estimation of gradients

12

Tools with Built-in Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 SystemTest

 Simulink Design Optimization

 Bioinformatics Toolbox

 Model-Based Calibration Toolbox

 …
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Worker

Worker

Worker

Worker Worker

Worker

Worker TOOLBOXES

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

13

Programming Parallel Applications

Level of control

Minimal

Some

Extensive

Parallel Options

Low-Level

Programming Constructs:
(e.g. Jobs/Tasks, MPI-based)

High-Level

Programming Constructs:
(e.g. parfor, batch, distributed)

Support built into

Toolboxes

14

Running Independent Tasks or Iterations

 Ideal problem for parallel computing

 No dependencies or communications between tasks

 Examples include parameter sweeps and Monte Carlo

simulations

Time Time

15

Example: Parameter Sweep of ODEs

 Solve a 2nd order ODE

 Simulate with different

values for b and k

 Record peak value for each run

 Plot results



  0
,...2,1,...2,1

5

 xkxbxm 

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

16

Summary of Example

 Mixed task-parallel and serial

code in the same function

 Ran loops on a pool of

MATLAB resources

 Used Code Analyzer to help
in converting existing for-loop

into parfor-loop

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

17

The Mechanics of parfor Loops

Pool of MATLAB Workers

a = zeros(10, 1)

parfor i = 1:10

 a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

Worker Worker

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

18

Converting for to parfor

 Requirements for parfor loops

– Task independent

– Order independent

 Constraints on the loop body

– Cannot “introduce” variables (e.g. eval, load, global, etc.)

– Cannot contain break or return statements

– Cannot contain another parfor loop

19

Advice for Converting for to parfor

 Use Code Analyzer to diagnose parfor issues

 If your for loop cannot be converted to a parfor, consider
wrapping a subset of the body to a function

 Read the section in the documentation on
classification of variables

 http://blogs.mathworks.com/loren/2009/10/02/using-parfor-
loops-getting-up-and-running/

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

24

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

25

What is a Graphics Processing Unit (GPU)

 Originally for graphics acceleration, now also

used for scientific calculations

 Massively parallel array of integer and

floating point processors

– Typically hundreds of processors per card

– GPU cores complement CPU cores

 Dedicated high-speed memory

* Parallel Computing Toolbox requires NVIDIA GPUs with Compute Capability 1.3 or greater, including

NVIDIA Tesla 10-series and 20-series products. See http://www.nvidia.com/object/cuda_gpus.html

for a complete listing

http://www.nvidia.com/object/cuda_gpus.html

26

Summary of Options for Targeting GPUs

1) Use GPU array interface with MATLAB

built-in functions

2) Execute custom functions on elements of

the GPU array

3) Invoke your CUDA kernels directly from

MATLAB

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

27

Performance: A\b with Double Precision

29

Parallel Computing enables you to …

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

30

Limited Process Memory

 32-bit platforms

– Windows 2000 and XP (by default): 2 GB

– Linux/UNIX/MAC system configurable: 3-4 GB

– Windows XP with /3gb boot.ini switch: 3 GB

 64-bit platforms

– Linux/UNIX/MAC: 8 TB

– Windows XP Professional x64: 8TB

31

TOOLBOXES

BLOCKSETS

Distributed Array

Lives on the Cluster

Remotely Manipulate Array

from Desktop

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Client-side Distributed Arrays

32

Enhanced MATLAB Functions That Operate

on Distributed Arrays

33

spmd blocks

spmd

 % single program across workers

end

 Mix parallel and serial code in the same function

 Run on a pool of MATLAB resources

 Single Program runs simultaneously across
workers

– Distributed arrays, message-passing

 Multiple Data spread across multiple workers

– Data stays on workers

36

Programming Parallel Applications

Level of control

Minimal

Some

Extensive

Parallel Options

Low-Level

Programming Constructs:
(e.g. Jobs/Tasks, MPI-based)

High-Level

Programming Constructs:
(e.g. parfor, batch, distributed)

Support built into

Toolboxes

37

MPI-Based Functions in

Parallel Computing Toolbox™

Use when a high degree of control over parallel algorithm is required

 High-level abstractions of MPI functions

– labSendReceive, labBroadcast, and others

– Send, receive, and broadcast any data type in MATLAB

 Automatic bookkeeping

– Setup: communication, ranks, etc.

– Error detection: deadlocks and miscommunications

 Pluggable

– Use any MPI implementation that is binary-compatible with MPICH2

38

Example: Image De-Noising

(Large Image Processing)

Use median filtering to reduce “salt & pepper” noise.

Noisy Image Filtered Image

http://hirise.lpl.arizona.edu/

From - NASA/JPL/University of Arizona

39

Noisy Image – too large for a desktop

40

Distribute Data

41

Distribute Data

43

Pass Overlap Data

44

Pass Overlap Data

45

Pass Overlap Data

47

Apply Median Filter

48

Combine as Distributed Data

49

Combine as Distributed Data

54

Scheduling Applications

55

Interactive to Scheduling

 Interactive

– Great for prototyping

– Immediate access to MATLAB workers

 Scheduling

– Offloads work to other MATLAB workers (local or on a cluster)

– Access to more computing resources for improved performance

– Frees up local MATLAB session

56

Scheduling Work

TOOLBOXES

BLOCKSETS

Scheduler

Work

Result

Worker

Worker

Worker

Worker

58

Example: Schedule Processing

 Offload parameter sweep

to local workers

 Get peak value results when

processing is complete

 Plot results in local MATLAB

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

59

Summary of Example

 Used batch for off-loading work

 Used matlabpool option to

off-load and run in parallel

 Used load to retrieve

worker’s workspace

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

62

Scheduling Workflows

 parfor

– Multiple independent iterations

– Easy to combine serial and parallel code

– Workflow

 Interactive using matlabpool

 Scheduled using batch

 jobs/tasks

– Series of independent tasks; not necessarily iterations

– Workflow  Always scheduled

63

Scheduling Jobs and Tasks

TOOLBOXES

BLOCKSETS

Scheduler

Job

Results

Worker

Worker

Worker

Worker

Task

Result

Task

Task

Task

Result

Result

Result

64

Example: Scheduling Independent

Simulations

 Offload three independent

approaches to solving our

previous ODE example

 Retrieve simulated displacement

as a function of time for

each simulation

 Plot comparison of results

in local MATLAB
0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

65

Summary of Example

 Used findResource to find scheduler

 Used createJob and createTask

to set up the problem

 Used submit to off-load and

run in parallel

 Used getAllOutputArguments

to retrieve all task outputs
0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

66

Factors to Consider for Scheduling

 There is always an overhead to distribution

– Combine small repetitive function calls

 Share code and data with workers efficiently

– Set job properties (FileDependencies, PathDependencies)

 Minimize I/O

– Enable Workspace option for batch

 Capture command window output

– Enable CaptureDiary option for batch

67

MATLAB and Parallel Computing Tools

Industry Libraries

Message Passing Interface (MPI)

Parallel Computing with MATLAB

 Built in parallel functionality
within specific toolboxes
(also requires Parallel
Computing Toolbox)

 High level parallel functions

 Low level parallel functions

 Built on industry
standard libraries

matlabpool batch parfor

jobs, tasks

ScaLAPACK

O
p

ti
m

iz
a

ti
o

n

T
o

o
lb

o
x

G
lo

b
a
l
O

p
ti

m
iz

a
ti

o
n

T
o

o
lb

o
x

S
y
s

te
m

 T
e

s
t

S
im

u
li

n
k

 D
e

s
ig

n

O
p

ti
m

iz
a

ti
o

n

B
io

in
fo

rm
a

ti
c

s

T
o

o
lb

o
x

M
o

d
e

l-
B

a
s
e

d

C
a

li
b

ra
ti

o
n

 T
o

o
lb

o
x

A
n

d
 m

o
re

…

68

Parallel Computing on the Desktop

Desktop Computer

Parallel Computing Toolbox

 Rapidly develop parallel

applications on local computer

 Take full advantage of desktop

power by using CPUs and

GPUs

 Separate computer cluster

not required

69

Scale Up to Clusters, Grids and Clouds

Computer Cluster

MATLAB Distributed Computing Server

Scheduler

Desktop Computer

Parallel Computing Toolbox

70

Licensing: MATLAB® Distributed Computing

Server™

 One key required per worker:

– Packs of 8, 16, 32, 64, 128, etc.

– Worker is a MATLAB® session,

not a processor

 All-product install

– No code generation or deployment

products

Worker

Scheduler
Worker

Worker
Parallel

Computing

Toolbox

MATLAB

Simulink

Blocksets

Toolboxes

Task

Result

Job

Result

MATLAB Distributed

Computing Server

72

Open API for others

Support for Schedulers

Direct Support

TORQUE

http://www.microsoft.com/hpc/en/us/default.aspx
http://www.univa.com/

73

MathWorks Contact Information

For pricing, licensing, trials and general questions:

Tim Mathieu

Sr. Account Manager

Education Sales Department

Email: Tim.Mathieu@mathworks.com

Phone: 508.647.7016

Customer Service: service@mathworks.com

 508.647.7000

Technical Support: support@mathworks.com

 508.647.7000

mailto:Tim.Mathieu@mathworks.com
mailto:Tim.Mathieu@mathworks.com
mailto:service@mathworks.com
mailto:support@mathworks.com

